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Executive Summary 
 
In this report, we describe risk assessment work done using the National Risk Assessment 
Partnership (NRAP) applied to CO2 storage at Kevin Dome, Montana. Geologic CO2 sequestration 
in saline aquifers poses certain risks including CO2/brine leakage through wells or non-sealing 
faults into groundwater or to the land surface. These risks are difficult to quantify due to data 
availability and uncertainty. One solution is to explore the consequences of these limitations by 
running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow 
reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a large 
number of full-physics simulations is usually too computationally expensive. The NRAP 
integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from 
full-physics simulations to address this issue. A powerful stochastic framework allows NRAP-
IAM to explore complex interactions among many uncertain variables and evaluate the likely 
performance of potential sequestration sites. 
 
Section 1 has an overview of the Big Sky Project with its original goals and current closeout 
objectives in the context of geological carbon storage as a climate change mitigation technology. 
To aid this effort, the NRAP toolset is utilized to carry out risk assessment calculations of a 
hypothetical CO2 injection and the impact it may potentially have on surrounding receptors. A 
brief history of NRAP is also covered in this section. 
 
Section 2 provides a summary of the characterization work at the Kevin Dome site to date and 
explains the significance of the acquired dataset. This work includes 3-dimensional seismic data, 
borehole and core measurements, and well test data that were acquired, processed, and interpreted 
during Phase II of the project. These data reveal critical insights into the structure of Kevin Dome, 
its potential storage formations, and the caprock layers that would safeguard the CO2 plume in the 
event of actual injection. 
 
Section 3 presents the risk assessment workflow used in this study. This section includes 
subsurface reservoir simulations generated from the Eclipse Compositional (E300) reservoir 
simulator that is considered an energy industry standard and is used as input to the NRAP toolset. 
Simulation results from E300 include reservoir pressure and CO2 gas saturation distributions at 
each time-step of the injection and monitoring period. These time-dependent distributions were 
analyzed at the top layer of the CO2 sequestration reservoir and used to create ROMs. The role of 
ROMs is to replace full-physics models and allow risk assessment calculations to be less 
computationally expensive. To calculate risk of CO2 and brine potentially being leaked to an 
intermediate reservoir, underground sources of drinking water (USDW) aquifers, and the 
atmosphere, two models of wellbore and fault leakage pathways were employed.  
 
Section 4 summarizes the risk assessment results and provides an analysis of uncertainty of a 
hypothetical CO2 injection in the middle Duperow formation at the Kevin Dome site. This study 
demonstrates the usage of NRAP-IAM in assessing CO2/brine leakage through both abandoned 
wells and fault pathways in a real field application. We identified key parameters for which 
potential CO2 leakage is sensitive including fracture permeability, end-point CO2 relative 
permeability, capillary pressure, and permeability of confining rocks. The number of NRAP Monte 
Carlo realizations necessary to reach a converged solution was about 500 to 600. 
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1. Introduction 
 
Global warming is an environmental issue linked to the rise in global average temperatures because 
of increases in greenhouse gases such as carbon dioxide (CO2) and methane in the atmosphere. 
Geologic carbon sequestration (GCS) has been proposed as a method to mitigate global warming 
(Metz et al., 2005). Candidate formations for GCS include depleted hydrocarbon reservoirs, 
unmineable coalbeds and saline aquifers (Bachu, 2000). Among them, saline aquifers are known 
to have the highest capacity for large scale subsurface storage (USDOE, 2015) and have been the 
formations of interest of multiple GCS projects around the world, including Australia (Stalker et 
al., 2014), Algeria (Ringrose et al., 2013), Norway (Singh et al. 2010), China (Nguyen and 
Stauffer, 2017), and the US (Soltanian et al., 2016). However, GCS in saline aquifers poses certain 
risks including CO2 and brine leakage through abandoned wellbores or non-sealing faults into 
groundwater or to the earth surface. Large injection volumes of CO2 could potentially induce 
seismicity through fault reactivation in the subsurface (Zoback and Gorelick, 2012; Bidgoli et al., 
2014; Rinaldi et al., 2015). In addition to contributions to global warming, leakage of CO2 and 
brine can threaten groundwater resources (Wilkin and DiGiuli, 2010; Keating et al., 2010; Trautz 
et al., 2012). 
 
In an effort to better understand GCS, the US Department of Energy formed partnerships between 
industry, universities, and national laboratories to explore the viability of this concept in different 
regions of the United States. The Big Sky Carbon Sequestration Partnership’s (BSCSP) Kevin 
Dome project is one of several Regional Carbon Sequestration Partnership Phase III Development 
projects with an intent to inject one million metric tons of CO2 into a storage formation while 
validating site characterization, modeling and monitoring techniques. The target reservoir at Kevin 
Dome is the middle Duperow, a Devonian era carbonate (mixed dolostone and limestone) interval 
of ~100 ft thickness that produced CO2 in drill stem tests of some historic wells near the apex of 
the dome but contains brine down dip.  The original project scope planned to use the gas cap as 
the CO2 source and the same reservoir in the down-dip brine leg as the storage target. This 
approach could provide some unique advantages: 1) wellbore data (logs and core) from the gas 
cap and brine leg would allow comparison of reactive reservoir rock and caprock exposed to CO2 
over geologic time vs. an engineered storage timescale providing insight on geochemical impacts 
on injection and storage; and 2) the concept of domes as storage hubs where CO2 could be injected 
for storage and produced for enhanced oil recovery (thereby decoupling CO2 production and 
utilization rates) could be tested.  
 
In the process of the Kevin Dome site characterization, it was found that, counter to regional data 
trends, the targeted storage reservoir had less than 10,000 ppm total dissolved solids (TDS) which 
means it would be classified as an Underground Source of Drinking Water (USDW) by the primary 
criterion in the Environmental Protection Agency’s (EPA) Underground Injection Control (UIC) 
regulations. The storage reservoir also had significant levels of H2S and while most well classes 
allow for exceptions to the 10,000 ppm TDS minimum (e.g., if hydrocarbons or toxic substances 
are present at high enough levels), Class VI for CO2 injection does not. Thus the project would be 
unable to secure a CO2 injection permit.  Nonetheless, valuable samples and data were acquired 
during the characterization including over 36 mi2 of 3-dimensional, 9-component seismic data, 
and borehole data from two wells, one in the brine leg and one in the gas cap of a natural CO2 
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reservoir including modern log suites and 45 ft of core of reactive reservoir rock and reactive 
caprock (the tight upper Duperow).  The project has been re-scoped to utilize the existing samples 
and data to contribute to understanding CO2 storage including the study reported here. 
 
The scale of the BSCSP Kevin Dome project is typical of a GCS field site, and requires reservoir 
models spanning 10s-100s of km2 in areal extent with a vertical extent of well over 1 km. In 
addition to a model for the injection reservoir, faults, existing wellbores, overlying USDWs, and 
leakage of CO2 to the surface need to be considered.  Coupled site models are used to make 
predictions about site behavior and to provide insight into site evolution.  As data become 
available, models are refined to better simulate actual site behavior with a goal of reducing 
uncertainty and reducing risks to site operations. Risk proxies can be used to gauge possible 
impacts without calculating true risk values, a process that requires estimates of impacts that are 
often difficult to quantify.  Risk proxies used previously include CO2 injectivity; size of the Area 
of Review (AoR); CO2 migration out of the injection horizon; and optimum location of monitoring 
wells (Dai et al., 2014).  
 
One solution to creating a fully coupled system model is running high-fidelity, multiphase 
numerical simulations for an entire domain including a storage reservoir, shallow aquifers, 
wellbores, and faults across large spatial and temporal scales of GCS operation. Although this 
approach can address complex multiphase flow and trapping mechanisms, it requires fine spatial 
and temporal discretization to accurately model these complex physics that is usually 
computationally expensive. In addition, assessing these risks can easily require a large number of 
numerical simulations to span the many uncertainties and therefore this approach is not 
computationally attractive. Several (semi-)analytical models are available (Mathias et al., 2009; 
Nordbotten et al., 2005; Vilarrasa et al., 2013; Mijic et al., 2014; Zhou et al., 2017a; Zhou et al., 
2017b). While analytical models provide significant benefits in terms of computational cost, these 
approaches cannot capture details such as permeability heterogeneity, which can be important in 
GCS.  
 
Los Alamos National Laboratory initiated a hybrid (numerical plus analytical) system model, CO2-
PENS (Predicting Engineered Natural Systems: Stauffer et al. 2006; Pawar et al., 2006) which is 
an Integrated Assessment Model (IAM) used to determine CO2 storage risk profiles. This tool was 
adapted to use as the base IAM for the US-DOE funded National Risk Assessment Partnership 
(NRAP) and the expanded tool, including contributions from several national laboratories (Carroll 
et al. 2016b), has been named NRAP-IAM (Pawar et al., 2016). NRAP-IAM simulates CO2 storage 
reservoir security using reduced order models that are computationally efficient and allow analysis 
of the impact of uncertainty on prediction of leakage potential. NRAP-IAM decomposes the 
problem into interacting discrete components including a storage reservoir, wells, faults, 
intermediate reservoirs, shallow aquifers and the atmosphere. Each component has assigned 
properties with a range of uncertainties. For example, the pressure-saturation history of the CO2 
storage reservoir is represented using reduced order models (ROMs) developed from the results of 
full-physics simulations of CO2 injection processes (Stauffer et al. 2015). Legacy wells within the 
area of interest have uncertainties in terms of total number, location, and wellbore integrity 
(Viswanathan et al. 2008, Hu et al., 2012; Jordan et al., 2015; Harp et al. 2016). Shallow drinking-
water aquifers have uncertainties associated with permeability, porosity and thickness (Figure 1-
1) (Keating et al., 2016; Carroll et al., 2016; Dai et al., 2014). NRAP-IAM allows the user to 
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explicitly define parameter values where data are available or to use generic properties obtained 
from the literature. The CO2 storage system components are linked through potential CO2 and 
brine pathways such as legacy wells and unsealed faults. Results of CO2 migration are calculated 
in a Monte-Carlo framework in terms of 1) the amount of CO2 present in the various model 
components, including reservoir and shallow formations, 2) the areal and volumetric extent of CO2 
plumes in the reservoir and shallow formations, and 3) components potentially impacted by CO2 
migration, such as shallow groundwater wells. The powerful stochastic framework allows NRAP-
IAM to explore complex interactions among a large number of uncertain variables and to help 
evaluate the likely performance of potential sequestration sites. 
 
Based on an algorithm developed at LANL, King (2016) built the Reservoir Reduced Order Model 
–Generator (RROM-Gen), which is a tool to convert reservoir simulation outputs from full-physics 
codes into lookup tables necessary to run the NRAP-IAM for uncertainties in a storage reservoir. 
RROM-Gen can utilize reservoir simulation data from a number of different simulators such as 
FEHM (Zyvoloski, 2007), TOUGH2 (Pruess et al., 1999), STOMP (White et al., 2012), ECLIPSE 
(Schlumberger), and GEM (CMG). RROM-Gen extracts CO2 saturations and dissolved 
concentrations, temperature, and pressure from the top layer1 of the injection reservoir to use as 
input for risk analysis in NRAP-IAM. Bilinear interpolation is performed to map full-physics 
calculations and input data on reservoir properties including elevation, permeability, temperature, 
pressure and CO2 saturations and dissolved concentrations onto the 100x100 grid used within the 
NRAP-IAM. Note that the conversion is performed for every time step for dynamic data. The 
interpolated sets of properties, RROMs, provides a distribution of values for the uncertain 
parameters characterizing performance of the storage reservoir (Figure 1-1). 

  

 
Figure 1-1: NRAP-IAM risk assessment workflow 

 

                                                 
1 Only the top layer is used as representing the source term for leakage into wells and faults. 
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Viswanathan et al. (2008) and Stauffer et al. (2009) applied CO2-PENS to CO2 sequestration 
scenarios in synthetic cases including a depleted oil reservoir and saline aquifers. In these studies, 
CO2-PENS had multiple options for leakage through wellbores including analytical wellbore 
leakage modules created by the Princeton-CMI group (Nordbotten et al., 2008) and the use of a 
multiphase-numerical simulator Finite Element Heat and Mass-Transfer (FEHM) (Zyvoloski, 
2007). The first option was validated with CO2 sequestration scenarios in simple homogeneous 
cases for a 2500 day period by comparing with numerical simulation results using ECLIPSE 
(Nordbotten et al., 2008). The comparisons show deviations in early time because of numerical 
dispersion in ECLIPSE and good agreement at late time. However, there is no guarantee that the 
analytical solution can maintain accuracy after the short period (2500 days) because assumptions 
in the analytical solution may not be valid over tens to hundreds of years, which is a typical CO2 
storage and monitoring scenario. While analytical models may be applicable to simple scenarios, 
they may not be capable of field case studies involving complexities such as heterogeneous 
permeability distributions. Although accurate, the second option to use FEHM to model wells can 
be computationally expensive if uncertainties are high and a large number of simulations is needed. 
To overcome this, Jordan et al. (2015) and Harp et al. (2016) developed wellbore leakage ROMs 
using response surfaces based on thousands of multiphase numerical simulations (using FEHM). 
The Multivariate Adaptive Regression Splines (MARS) algorithm (Frieman, 1991) was used to 
extract wellbore leakage ROMs that capture trends of leakage rates by numerical simulations. In 
the ROM approach, assumptions required in analytical solutions are not required and the 
computational burden is no longer a concern. Jordan et al. (2015) implemented the wellbore 
leakage ROMs into CO2-PENS and used underlying reservoir simulations from the Kimberlina 
site in central California with several simplifications (Birkholzer et al., 2011b). A hypothetical set 
of five legacy wells were used in the application. Wellbore permeabilities were sampled from a 
random distribution and 54 full reservoir simulations of CO2 injection into the Kimberlina 
reservoir were conducted, and the reservoir simulation results were converted into lookup tables 
and sampled using uncertain parameters in the storage reservoir.  
 
Although hypothetical, this application showed the utility of the wellbore ROM in being able to 
quantify the CO2 and brine leakage risks quickly. However, the sampling method in NRAP-IAM 
still remains a challenge: the number of numerical simulations required in this approach increases 
exponentially corresponding to the number of uncertain parameters. Specifically, the logic used in 
the Kimberlina example requires a minimum of 3N simulations, where N is the number of 
uncertain parameters and the multiplier ‘3’ corresponds to low, base and high values spanning the 
range of each parameter in a simple box design. There are three uncertain parameters including 
permeability, pore compressibility, and porosity in the Kimberlina example, with 6 levels given to 
the most sensitive reservoir permeability (Birkholzer et al., 2011). Thus the number of reservoir 
simulations required is 6x3x3 = 54. Although this approach is faster than running numerical 
simulations for an entire domain including a storage reservoir, shallow formations and legacy 
wells, it can be computationally prohibitive in field case applications because there are usually 
more than three significant uncertainties (Yoshida, 2016) such as relative permeability and 
capillary pressure and a single simulation can take days. A number of simulation studies and 
uncertainty quantifications of GCS have been done (Eigestad et al., 2009; Bao et al., 2013; Barrufet 
et al., 2010; Birkholzer et al., 2011; Pawar et al., 2014; Jordan et al., 2015; Dai et al., 2014; Harp 
et al., 2016; Nguyen et al., 2017a; Nguyen et al., 2017b). However, these only focus on a storage 
reservoir or include wellbore leakages but with a limited number of uncertain parameters. 
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Consequently, in this report we develop a new workflow in which we employ the Latin Hypercube 
Sampling (LHS) parameter sampling method to generate realizations of numerical simulations for 
the storage reservoir. LHS is a stratified-random procedure and provides an efficient way of 
sampling parameters from their distributions (McKay et al., 1979; Iman and Conover, 1980). 
Unlike random sampling, LHS ensures a full coverage of the range of each parameter by 
maximally stratifying each marginal distribution. Fewer numerical simulations are required to 
cover the same range of uncertainties in the developed workflow compared to previous 
approaches. Alternatively, with the same number of numerical simulations, the LHS approach can 
investigate more parameters. The new workflow allows NRAP-IAM to perform risk assessment 
for field scale applications using fewer underlying reservoir simulations resulting in lower 
computational burden.  
 
To demonstrate the new workflow, this report presents the first application of the newly released, 
online, NRAP toolset to a Phase III Regional Carbon Sequestration Partnership dataset. We apply 
NRAP-tools to a fractured saline storage reservoir located at Kevin Dome in Montana. Data 
included in the analysis include a 3-D seismic survey, examination of existing boreholes in the 
region that penetrate the proposed Big Sky injection horizon, hydraulic testing on the proposed 
injection well, core analysis and permeability testing, site topology, and groundwater chemistry. 
Using the Schlumberger reservoir simulator, Eclipse, we generate simulations of CO2 injection to 
explore uncertainty analysis within the NRAP-IAM tool.  We investigate a variety of uncertain 
reservoir parameters including permeability, porosity, relative permeability, hysteresis of relative 
permeability, capillary pressure, fracture density, and salinity of the aquifer.  Sensitivity of the 
NRAP-IAM model results to leakage of both brine and CO2 are used as criterion to down-select 
to six primary uncertain variables. These six variables are then used to generate a set of 50 LHS 
reservoir simulations, reducing the number of simulations needed from 300 as reported by Dai et 
al. (2014). The reservoir simulations are extracted to lookup tables and used as input to the NRAP-
IAM where leakage uncertainty distributions are generated.  We also present estimates of the mass 
of CO2 that could be injected during a four-year period at this site and compare results from the 
new method with a simpler method used previously. Finally, convergence of the results with 
increasing numbers of NRAP-IAM simulations is discussed. 
 
2. Site Description 
 
The Big Sky Carbon Sequestration Partnership (BSCSP) has investigated Kevin Dome, located in 
Toole County, north-central Montana (Figure 2-1), and its naturally occurring CO2 as an analog 
for carbon storage and as a potential site for additional storage of anthropogenic CO2.  Detailed 
site characterization, laboratory core studies, well tests, and geologic/geophysical models coupled 
with operational data have deepened our understanding of the use of site characterization data for 
predicting geologic system performance. Additionally, this work has improved our understanding 
of the largest naturally occurring trap of CO2 in the northwestern United States. 
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Figure 2-1: Location map of the Kevin Dome Project showing the location of the project, sources 
of anthropogenic CO2, and other large structural domes in the region. 
 
2.1. Reservoir Geology 
 
Kevin Dome is a large structural dome formed as a culmination along the Sweetgrass Arch (Figure 
2-2). The dome covers approximately 700 square miles (1800 square kilometers) at the Devonian 
Duperow stratigraphic level with approximately 750 feet (229 meters) of structural relief. 
Naturally occurring CO2 has been documented from several oil and gas wells that have tested the 
Duperow formation over the past 50 years, but the volume, continuity of the trapped gas, and 
circumstances of its entrapment have been poorly understood.  This dome is integral to trapping 
oil, natural gas and CO2 (Figure 2-3) and has produced oil and natural gas since its discovery in 
1922.  Naturally occurring CO2 is trapped in two major dolomite porosity zones within the 
Devonian Duperow formation.  Oil and natural gas are trapped in a shallower limestone and 
sandstone reservoirs (Figure 2-3). 
 

Kevin Dome 
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Figure 2-2: Tectonic map of Montana shows Kevin Dome As a large structural closure along the 
Sweetgrass Arch in north-central Montana. The inset window is an enlarged view of the surface 
geologic map of Kevin Dome.   
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Figure 2-3: a) Schematic east-west cross-section demonstrating trapping relationships of oil, 
natural gas, and CO2 on Kevin Dome. b) Stratigraphic column of geologic units at Kevin Dome. 
 
The primary objective of the Big Sky Carbon Sequestration Partnership Phase III project was to 
extract up to 1 million metric tons of CO2 from the naturally occurring CO2 reservoir in the 
Duperow formation and re-inject it into the brine-filled portion of the Duperow formation at the 
flank of Kevin Dome (Figure 2-4). This project was to demonstrate that the target formation and 
other analogous formations are viable and safe targets for sequestration of a large fraction of the 
region’s CO2 emissions.  The success criteria for the project would have been to safely inject CO2 
into the storage formation and through models and monitoring indicate permanence of storage in 
the reservoir.  The research objectives were to improve the understanding of injectivity, capacity, 
and storativity in a regionally significant formation.  
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Figure 2-4: Schematic cross-section showing the original technical approach that was envisioned 
for the project. Two principal wells were drilled to provide data for reservoir and site 
characterization, and to test production potential for CO2 from the Duperow Fm. (Danielson 33-
17 well) and to test the potential injectivity (Wallewein 22-1 well). 
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After extensive efforts by BSCSP, the objective to extract up to 1 million metric tons of CO2 from 
the naturally occurring CO2 reservoir in the Duperow formation and re-inject it into the brine-filled 
portion of the Duperow formation proved to be unachievable for two reasons: (1) although the 
natural CO2 was present as expected, BSCSP was unable to produce the CO2 in large quantities 
due to phase transitions of the CO2 in the reservoir; and (b) the total dissolved solids (TDS) of the 
brine in the targeted injection formation (Duperow) is less than 10,000 parts per million, which is 
lower than the TDS allowed (no exceptions) for carbon storage under U.S. EPA UIC Class VI 
injection rules. Neither of these outcomes were predicted from pre-characterization data.  Given 
that the original objective of the BSCSP Phase III project cannot be achieved, the primary objective 
of the project has been revised to maximize the value of the existing data to DOE’s Carbon Storage 
Program. 
 
2.2. Characterization Data 
 
2.2.1. Seismic Data 
 
Given the anticipated presence and importance of natural fracturing in the targeted Duperow 
formation, the partnership acquired a multicomponent 3D seismic survey to characterize faulting, 
natural fractures and porosity heterogeneity in the Duperow.  The 9 component 3-dimensional (9C-
3D) seismic survey was acquired over three winter field seasons using both shear-wave vibrators 
and conventional P-wave vibrators.  The chosen survey design was a relatively dense, 
symmetrically-sampled orthogonal layout with equal shot and receiver intervals of 110 feet.  The 
corresponding shot and receiver line intervals were 880 and 660 feet respectively.  The rectangular 
recording spread comprised 12 receiver lines, each having 96 channels, which delivered a very 
good azimuth and offset distribution for inversion of the data for both azimuthal anisotropy 
parameters and quantities reliant on high-quality long offset information from the horizontal and 
vertical shear wave (SH and SV) datasets such as density.  Each receiver group consisted of a 
single digital three-component MEMS sensor augured into the ground with dedicated hand drills. 
 
The first phase of the survey comprised the acquisition of approximately 8.5 square miles of 9C-
3D data from January to March 2012.  The second phase, acquired in the Winter of 2012/2013, 
resulted in the addition of 19 square miles of data and the final field season in the Winter of 
2013/2014 completed data acquisition, resulting in a final survey area of approximately 36 square 
miles.  Notable challenges during acquisition included both extremely cold and warm weather and 
the ensuing freeze/thaw cycles that greatly slowed field operations, as well as an unexpectedly 
large number of archeological sites which had to be delineated and avoided by the seismic 
acquisition crew. 
 
Data processing for each mode included the traditional steps of geometry assignment and trace 
edits; compression (P) and shear (S) wave refraction statics using a general linear inversion (GLI) 
technique; eigenimage ground roll attenuation followed by conventional residual statics and 
velocity analysis; final noise attenuation in the cross-spread domain; and prestack time migration.  
Additional steps specific to the multicomponent data included source and receiver rotation (only 
receiver rotation in the case of the P, S data) and polarization analysis to determine the appropriate 
anisotropic symmetry system for further processing.  Apart from a small area in the northeastern 
portion of the survey, no measurable azimuthal anisotropy was observed on the shear data, so 
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further processing for the SH, SV, and PS data was performed in a radial-transverse frame after 
layer stripping the shallow anisotropy observed in the area that did possess azimuthal anisotropy.  
The PS dataset also required common conversion-point binning due to the asymmetric raypaths 
characteristic of this mode. 
 
After processing, each individual mode was interpreted for structure and amplitude variations 
corresponding to changes in rock properties in the overburden and target section.  An essential part 
of the interpretation included a joint inversion of the P data with all of the multicomponent data to 
generate bandlimited P and S impedance and density volumes on the P time scale.  These datasets 
were depth converted with depth structure maps created by integrating well tops with their 
corresponding seismic events at the Bow Island, Sunburst, Potlach, mid-Duperow porosity zone, 
and Souris River horizons and the resulting 3D seismic volumes were used to constrain the 
reservoir model built for the project. 
 
Figure 2-5 depicts the seismic data area (map view) and interpreted faults by Schlumberger 
(marked as black) using edge detection. Though there are potentially about 11 faults in the study 
area, only one closest to Wallewein 22-1 to the West is considered in this modeling study as it is 
more likely to pose a possibility of leakage. The fault is incorporated into NRAP-IAM as a leakage 
pathway, along with legacy wells, to calculate the potential CO2 and brine leakage rates to an 
intermediate reservoir and shallow groundwater aquifers. 
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Figure 2-5: Fault interpretations by Schlumberger (after Zaluski, 2017) 
 
2.2.2. Well Data 
 
Two wells, the Danielson 33-17 (the first of several proposed production wells to supply CO2 for 
the project) and the Wallewein 22-1 (a characterization and monitoring well near the proposed 
injection site) were drilled to depths below the base of the Duperow formation.  The wells were 
cored in the major Duperow reservoir porosity zone and in primary and secondary caprock seals, 
and were logged with a detailed suite of tools including gamma ray, neutron porosity, total 
porosity, effective porosity, neutron magnetic resonance, and other physical variables. An 
extensive well testing program was implemented in both wells to test reservoir and fluid properties. 
It was discovered that CO2 could not feasibly be produced from Danielson 33-17 and the salinity 
was too low in the middle Duperow formation to be able to obtain a Class VI UIC permit from 
EPA. 
 
A step-rate injection and pressure fall-off test was conducted by Northern Lights Energy Company 
and Sanjel on the Wallewein 22-1 well in Toole County, Montana, from March 18, 2015, to March 
27, 2015. Tandem electronic quartz gauges were run into the well on March 18, taking gradient 
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stops every 300 feet going into the well. Gauges were set at 4019 ft, and injection of 3% NaCl 
water began on March 19, 2015, at 09:57 a.m. After completion of all testing, gradient stops were 
also taken every 300 ft while coming out of the well. Due to operational difficulties with the 
flowmeter, the injection rates for days 2 and 3 were initially reported to be -854 barrels of water 
injected per day (bwipd) on day 2, and a final rate of -2000 bwipd on day 3. It was subsequently 
determined that day 2 and 3 rates were incorrect, thus, it was believed that determining the average 
injection rate based on volumes pumped would be most accurate. Therefore, for day 2 of injection, 
an average injection rate of 664 bwipd was used for a pumped volume of 225 barrels (bbls), and 
for day 3, an average injection rate of 686 bwipd was used for a pumped volume of 248 bbls. After 
injection, the final fall-off period was extended to 135 hours. 
 
Bottom-hole pressure data were matched by Onishi et al. (2017) by modifying permeability values 
in the vicinity of Wallewein 22-1 (Figure 2-6). A different initialization was implemented to 
achieve matrix and fracture permeability calibration that is more aligned with that reported by 
Zhou et al. (2013). Calibrated permeability was then used to populate reservoir properties in the 
later part of our study. 
 

 
Figure 2-6: History matched Bottom hole pressure (after Onishi et al., 2017) 

3. Methodology 
 
This section presents the risk assessment workflow (Figure 3-1) with the following three primary 
elements: 1) model parameterization and sensitivity analysis, 2) reservoir simulation, and 3) 
CO2/brine leakage computations. 
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Figure 3-1: NRAP-IAM risk assessment workflow 

 
3.1. Simulation Model 
 
3.1.1. Model Description 
 
We carried out all simulation runs using the Exploration Consultants Limited Implicit Program for 
Simulation Engineering in a native format (ECLIPSE), a petroleum industry-reference simulator 
which offers the industry’s most complete and robust set of numerical simulations for fast and 
accurate prediction of dynamic behavior for all types of reservoirs and development schemes 
(Schlumberger, 2015). A sector model of the field (Figure 3-2) was extracted with 69 × 69 × 22 
grid discretization with average cell dimensions of 152.4 × 152.4 × 3.0 m (injection zone) based 
on the radius of investigation which is an analytical approach to estimate propagation distance of 
the peak pressure disturbance for an impulse source or sink (Lee, 1982). Although this approach 
is limited to homogeneous media and for heterogeneous media when using the fast marching 
method (Vasco and Datta-Gupta, 2016), the reservoir is slightly heterogeneous and therefore 
estimates from the radius of investigation are a good approximation. We have compared simulation 
results between the full model and the sector model and found good agreement validating the use 
of the smaller sector model. 
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Figure 3-2: Kevin Dome permeability model with the injector (Wallewein 22-1) in the middle of 
the domain.  

 
The geologic model includes a low permeability caprock and basement as part of the CO2 storage 
system. The caprock and the basement were upscaled into single layers with average thickness of 
60 m. Geological data described above show the existence of fractures with a relatively low 
permeability contrast between fracture and matrix (Spangler, 2016). A dual porosity-dual 
permeability model (Warren and Root 1963; Blaskovich et al., 1983) was therefore adopted to 
model fractures because matrix-matrix connections are important, and yet knowledge of fracture 
distributions is too limited for use of discrete fracture models (Noorishad and Mehran, 1982; 
Monteagudo and Firoozabadi, 2004; Hyman et al., 2015) nor the embedded discrete fracture model 
(Li and Lee, 2006; Moinfar, 2013).  
 
The fluids modeled in this study using the CO2STORE (Schlumberger, 2015) facility in E300 for 
CO2 storage in the saline aquifer are described by aqueous, gaseous and solid phases, with three 
components: water (H2O), carbon dioxide (CO2), and salt (NaCl) respectively. It is assumed to be 
an isothermal system (Pruess and Garcia, 2002). Mutual solubilities of CO2 and H2O are calculated 
to match experimental data for typical CO2 storage conditions as described in by Spycher and 
Pruess (2005), based on fugacity equilibrium between water and a CO2 phase. Aqueous fugacity 
was obtained by Henry’s law, while CO2 fugacity was calculated using a modified Redlich-Kwong 
equation of state (EOS; Redlich and Kwong, 1949). The gaseous density was obtained by the 
modified Redlich-Kwong equation of state, where the attraction parameter is temperature 
dependent (Spycher and Pruess, 2009). The CO2 gaseous viscosity was computed based on results 
from Vesovic et al. (1990) and Fenghour et al. (1998). 
 

In our approach, the Corey equations (Corey, 1954) were applied for relative permeability 
curves. 
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where, 0
,r lk is the end-point relative permeability of phase l, lS is the saturation of phase l, ,l irS is 

the irreducible saturation of phase l, and m and n are the curvature exponents of CO2 and brine, 
respectively. The straight-line relative permeability curves are commonly used in dual continuum 
models (Romm, 1966) for fracture relative permeability. However, it is experimentally and 
numerically proven that the straight-line relative permeability curves are not always valid (Fourar 
et al., 1993; Pieters and Graves, 1994). Therefore, we follow previous simulation studies at this 
site (Zhou et al., 2013), in which non-idealized relative permeability curves are used for fracture 
relative permeability. Table 1 provides a summary of parameters used in Equation (1) and 
Equation (2) following Pruess and Garcia (2002) and Zhou et al. (2013). 
 

  TABLE 1: Parameters for relative permeability model (from Zhou et al. 2013) 

Parameter  Values 
Fracture   
End-point CO2 relative permeability,

2

0
,r COk  (-)  0.50 

End-point brine relative permeability, 0
,r brinek  (-)  0.15 

Irreducible CO2 saturation,
2 ,CO irS  (-)  0.10 

Irreducible brine saturation, brine,irS  (-)  0.30 
Exponent for CO2 relative permeability, m (-)  2.0 
Exponent for CO2 relative permeability, n (-)  5.0 
Matrix   
End-point CO2 relative permeability,

2

0
,r COk  (-)  0.30 

End-point brine relative permeability, 0
,r brinek  (-)  0.05 

Irreducible CO2 saturation,
2 ,CO irS  (-)  0.25 

Irreducible brine saturation, brine,irS  (-)  0.30 
Exponent for CO2 relative permeability, m (-)  2.0 
Exponent for CO2 relative permeability, n (-)  5.0 

 

The capillary pressure model used in this work is the Van Genuchten (1980) model: 
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where, 0P  is the strength coefficient, λ is the pore size distribution index, and the normalized brine 
saturation *S  is given by 
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Table 2 presents parameter values in Equations (1) through (4) for the base case following (Pruess 
and Garcia 2002; Zhou et al., 2013). Note that the same capillary pressure curves are used in the 
fracture and matrix domain. 
 
 TABLE 2: Parameters for capillary pressure model (from Zhou et al. 2013) 

Parameter  Values 
Strength coefficient, 0P  (bar)  0.30 
Exponent,λ  (-)  0.457 
Irreducible brine saturation, ,brine irS  (-)  0.30 
Maximum capillary pressure (bar)  5.0 

  
The model consists of a single injection well located in the center of the storage formation. The 
well, assumed to be connected to all layers in the injection zone, has a wellbore radius of 0.07 m 
(Zhou et al., 2013) and injects supercritical CO2 with a constant temperature of 34.4 oC and bottom-
hole pressure (BHP) control of 18.5 MPa which is based on the hydro-fracture limit for the 
Duperow formation (Dai et al., 2014). We applied a pore volume multiplier of 3000 in boundary 
cells to mimic a continuous aquifer which is essentially equivalent to a constant pressure boundary 
(Juanes et al., 2006) while no-flow boundary conditions were applied to lateral boundaries as 
defaulted in E300. Initial temperature and pressure were set at 34.4 °C and 10.0 MPa at the top of 
the injection zone, which is based on the geothermal gradient and hydrostatic pressure gradient 
(Zhou et al., 2013). The initial condition implies that injected CO2 will be in a supercritical state 
in the reservoir. The CO2 injection period lasts for 4 years and the CO2 plume is monitored over a 
period of 100 years post-injection which is a sufficient duration for the system to be at equilibrium. 
Because the CO2 injection was simulated at constant pressure for a fixed period of time, the total 
amount of CO2 injected was varied depending on the reservoir parameter obtained from the LHS. 
 
3.1.2. Sensitivity Analysis 
 
The first step is to identify the key performance parameters that characterize CO2 and brine 
leakage. Workflow of this sensitivity analysis follows Hill (2010) and Olalotiti-Lawal et al. (2017) 
and is presented in Figure 3-3. The list of parameters included in the sensitivity analysis is 
provided in Table 3. The table also contains the range of values of each of the parameter used. 
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Figure 3-3: Sensitivity study workflow 

 
TABLE 3: Reservoir, caprock and basement parameters and the range of assigned values 

Parameter Description Low Base High 

kf Fracture mean permeability (m2) 3.9e-14 5.9e-14 7.8e-
14 

kf_Corr Correlation length for fracture permeability, (m) 1000.0 3000.0 5000.0 
kvkh Vertical fracture permeability anisotropy (-) 0.02 0.50 1.0 
k_confrock Permeability of caprock and basement (m2) 3.0e-4 3.0e-2 3.0 

km Matrix permeability (uniform), (m2) 1.0e-14 2.0e-14 3.0e-
14 

krfCO2_end End point CO2 relative permeability in fracture, (-
) 0.30 0.50 0.70 

krmCO2_end End point CO2 relative permeability in matrix, (-) 0.10 0.30 0.50 

krfCO2_Hyst Hysteresis of CO2 relative permeability in 
fracture, (-) ON and OFF 

P0f Strength coefficient of fracture capillary pressure 
(bar) 0.20 0.30 0.40 

P0m Strength coefficient of matrix capillary pressure 
(bar) 0.20 0.30 0.40 

sigma Shape factor (m-2) 0.12 1.2 5.0 
Salinity Salinity of the aquifer (ppm) 1.0e+4 2.0e+4 3.0e+4 

  
The values and ranges of fracture and matrix permeability related parameters are based on previous 
simulation studies at this site (Dai et al., 2014; Zhou et al., 2013). We used constant values for 
matrix permeability and for the permeability and porosity of the confining layers (caprock and 
basement). The latter values were the same as those used in a previous simulation study at this site 
(Stauffer et al., 2013). Heterogeneous permeability fields were generated using sequential 
Gaussian simulation. Prior to the risk assessment, we calibrated the permeability field based on a 
recent pump test (water injection). Because the duration of the pump test was short (3 days) and 
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permeability values were modest (~5.9e-14 m2), pressure propagation was observed only in the 
vicinity of the injector. Hence, only grid blocks around the injector are sensitive to the objective 
function which is simply defined by the sum of misfits between observed bottom-hole pressure 
and simulated bottom-hole pressure at the injector. Although permeabilities at sensitive grid blocks 
were successfully calibrated, most of the reservoir properties remain uncertain. The sensitive grid 
blocks adjacent to the well were then used as hard data for the sequential Gaussian simulation 
(Figure 3-4). 
 

 
 

   

(a)  (b) (c)  
Figure 3-4: Heterogeneous permeability fields (top layer of the injection zone). (a) Correlation 
length = 1000 (m), (b) Correlation length = 3000 (m), and (c) Correlation length = 5000 (m) 
 
Matrix porosity is set as a constant value (Zhou et al., 2013) for simplification, whereas fracture 
porosity is computed by a correlation (Bernabe et al., 2003 and Deng et al., 2012) to reduce the 
number of parameters.  

 
bk aφ=  (5) 

where, k is permeability (m2), 𝜙𝜙 is porosity, a and b are constants depending on different 
processes and materials. In this study, a = 5.92*E-7 and b = 3.0 (Deng et al., 2012) 
 
Relative permeability curves used in the sensitivity analysis are presented in Figure 3-5. Yoshida 
et al. (2016) conducted a robust, statistical sensitivity analysis of relative permeability parameter 
values in CO2 storage and concluded that total CO2 injected (bottom-hole pressure constrained) is 
statistically correlated to only the end-point CO2 relative permeability. Hence, we only use the 
end-point CO2 relative permeability as an uncertain parameter for relative permeability curves 
although the Corey equations have other parameters such as exponents and residual saturation. 
 

  
(a) Fracture (b) Matrix 
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Figure 3-5: Relative permeability curves 
 

Relative permeability hysteresis was also considered. Different relative permeability curves were 
used for the drainage and imbibition processes (Juanes et al., 2006). Several empirical models to 
describe hysteresis effects have been developed (Land, 1968; Killough, 1976; Carlson, 1981). We 
used the Land model in this study: 
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where, SCO2,i is the initial CO2 saturation (CO2 saturation at flow reversal), C is the Land trapping 
coefficient, SCO2,max is the maximum CO2 saturation and SCO2,t,max is the maximum trapped gas 
saturation. The Killough’s method was applied for scanning curves (Killough, 1976). The Land 
trapping coefficient was set at 1.0 (Juanes et al., 2006) because parameters in Equation (7) are 
unknown. We used the range for Land trapping coefficient between the values 0.2 < C < 5.0 
(Krevor et al., 2015). The implication of C is illustrated in Figure 3-6. Higher C indicates less 
trapping (i.e., similar drainage and imbibition curves), and vice versa.  
 

 
Figure 3-6: Hysteresis relative permeability curves   
 
Figure 3-7 presents all the quantities for fracture CO2 relative permeability hysteresis. We found 
that hysteresis of matrix relative permeability did not significantly influence the results and thus 
is not further discussed in this study. 
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Figure 3-7: Hysteresis of CO2 relative permeability in fracture (after Schlumberger, 2015) 

 
Capillary pressure plays an important role in CO2 storage. When CO2 is injected into a saline 
aquifer, it will displace the resident fluid (brine) and migrate in response to buoyancy and pressure 
gradients. Subsequently, the brine imbibes back into the pore space pursuant to the migrating CO2 
plume. Small isolated blobs of CO2 will be trapped by capillary forces, i.e., capillary trapping or 
residual trapping (Krevor et al., 2015), which is an important process for maximizing capacity and 
ensuring the integrity of CO2 storage. The strength coefficient in Equation (3) was used to explore 
sensitivity of capillary pressure curves (Figure 3-8). Parameter values and ranges are based on 
Zhou et al. (2013) and Pruess and Garcia (2002) in Table 2. 
 

  
(a) Fracture (b) Matrix 

Figure 3-8: Capillary pressure curves in fracture and matrix 
 
The governing equations of the dual-porosity/dual permeability model has an additional 
source/sink term called the transfer function to address fracture-matrix interactions. The transfer 
function is proportional to a geometrical shape factorσ (m-2), and the driving force is the pressure 
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drop between a matrix grid block and surrounding fractures. A variety of formulations of the 
transfer function have been proposed (Warren and Root, 1963; Kazemi et al., 1976; Lim and Aziz, 
1995). We applied the commonly used approach assuming pseudo steady-state flow between 
fracture and matrix domain suggested by Kazemi et al. (1976): 
 

2 2 2

1 1 14.0
y zxl l l

σ
 
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 
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 (8) 

 
where lx, ly, and lz are the distances (m) between fractures in the x, y, and z directions. Because 
data for fracture distributions are not available, we applied a constant shape factor (σ ) value of 
0.12 to the entire fracture domain in our lower-end scenario based on Fakcharoenphol et al. (2014). 
A complete list of sigma values is presented in Table 3. 
 
Salinity of the aquifer can affect solubility trapping (Barrufet et al., 2010). The salinity range in 
this study is based on NETL (2015) and Zhou et al. (2013). Because this is a hypothetical risk 
assessment, we are not using measured USDW salinity values observed within the Middle 
Duperow in the Wallewein 22-1 well, where salinity below 104 mg/kg was observed. 
 
In our approach, we have 12 parameters (11 parameters have low, base, and high values and 
hysteresis of CO2 relative permeability in fractures is on or off) as shown in Table 3 and therefore 
we ran 24 reservoir simulations to obtain sensitivities. Subsequently, we applied RROM-Gen and 
NRAP-IAM to each case and computed CO2 and brine leakages. As mentioned, permeability and 
porosity of shallow formations and quality of cements of legacy wells are unknown. To conduct 
fair comparisons in the sensitivity analysis, typical constant values (Rathbun and Tai, 1988) are 
used (Table 4). 
 

TABLE 4: Parameters for NRAP-IAM 
Parameter  Values 
Sunburst   
Thickness, (m)  30.0 
Permeability, (m2)  9.9e-14 
Porosity, (-)  0.15 
Madison   
Thickness, (m)  240.0 
Permeability, (m2)  1.5e-13 
Porosity, (-)  0.15 
Banff   
Thickness, (m)  30.0 
Permeability, (m2)  9.9e-14 
Porosity, (-)  0.15 
Wells   
Number of wells in the injection zone, (-)  5 
Number of wells in shallow formations, (-)  45 
Wellbore cement effective permeability, (m2)  5.0e-11 
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For all scenarios in the sensitivity analysis, the sensitivity of parameter i was computed as the 
difference in the sum of leakage rates normalized by the standard deviations: 
 

, ,l i l base

l

Leakage Rate Leakage Rate
Sensitivity

σ
−

=  (9) 

where l represents different leakage locations of CO2 and brine to intermediate reservoirs, shallow 
aquifers, and the atmosphere. 
 
3.2. NRAP-IAM Model 
 
To conduct the risk assessment, we extracted numerical simulation results at each time-step for the 
top layer in the injection zone which has the highest CO2 concentrations and used this layer as the 
source of potential CO2 leakage. Fig 3-8 illustrates the workflow of RROM-Gen for a single 
realization. Note that we only extracted simulation results from the fracture system of the dual-
porosity and dual-permeability model as input to NRAP-IAM. The reason is that fractures are 
where most of the CO2 flow occurs. 

 

 
Figure 3-9: RROM-Gen extracted ROMs including elevation, fracture permeability, temperature, 
pressure, supercritical CO2 saturation, and dissolved CO2 weight fraction 

 
The regional geology includes permeable shallow formations (sandstone and dolomitic limestone) 
where CO2 or brine could accumulate from a potential leak (Figure 3-9a). The Madison formation 
in Figure 3-9a is a known USDW in some locations regionally. In addition, there are 5 legacy 
wells that penetrate the injection zone and approximately 45 wells that penetrate the shallow 
formations (Figure 3-9b). Unfortunately, permeability and porosity of the shallow formations and 
wellbore integrity (i.e., permeability of the external annulus) of legacy wells are unknown. We 
integrated these data into NRAP-IAM and evaluated leakage risks. Each Monte-Carlo realization 
simulated performance of the CO2 storage site over 104 years, which include 4 years of CO2 
injection with BHP control and 100 years post-injection relaxation. 
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(a) (b) 
Figure 3-10: Shallow permeable formations and legacy well locations. (a) shallow permeable 
formations (b) legacy well locations 
 
3.2.1. Model Description 
 
The reservoir simulation outputs including elevation, permeability, temperature, pressure, and CO2 
concentrations were converted into ROMs for NRAP-IAM using RROM-Gen for all realizations. 
These ROMs were used in NRAP-IAM to calculate leakage processes through two major leakage 
pathways: legacy wells (Onishi et al., 2017) and faults (Nguyen et al., 2017c). 
 

 

Figure 3-11: The NRAP-IAM input panel for surface parameters. 
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Figure 3-12: The NRAP-IAM input panel for shallow aquifer statistical parameters. 
 
3.2.1.1. Wellbore Input Parameters 
 
CO2/brine leakage to the atmosphere, shallow groundwater aquifers, and an intermediate reservoir 
through abandoned wellbore pathways was calculated from the wellbore leakage ROM (Harp et 
al. 2016). There are 5 legacy wells in this study and their location was imported as shown in Figure 
3-12. Well cement permeability distributions were taken as the FutureGen high-rate well models 
given in NRAP-IAM, which specifies a leakage rate of 11,000 tonnes/year at a frequency of one 
leaking well once in 10-3 to 10-5 well years (Carey, 2017). In this study, only leakage through 
external cement pathways is considered. 
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Figure 3-13: The NRAP-IAM input panel for defining legacy wells with known locations for well 
leakage calculation. 
 
This option for wellbore leakage assumes that permeability is constant along the borehole for each 
well. However, when this leakage option is invoked, the permeability values assigned to wells are 
chosen from distributions of permeability values. In the current study, permeability values are 
based on FutureGen high-rate field data of observed leakage along wellbores (Carey, 2017). Next, 
the IAM tool uses a ROM to calculated leakage of CO2 into the atmosphere and both CO2 and 
brine into two overlying aquifers using (Harp et al., 2016). The leakage module ROM was 
constructed from 3D wellbore leakage simulations using the FEHM code, which handles 
multiphase, non-isothermal flow using the control volume finite element method (Zyvoloski, 
2007). Latin Hypercube sampling of parameters was used to ensure coverage of the solution space. 
The FEHM simulations were performed with the assumptions that the wellbores can be modeled 
using Darcy flow with a continuum porous media simulator. Each wellbore in a NRAP-IAM model 
is location-specific and has attributes of CO2 pressure and saturation in the reservoir; these values 
were used as input to interrogate the ROM to define the rate of CO2 and brine leakage into each of 
the overlying aquifers and the atmosphere.  
 
3.2.1.2. Fault Input Parameters 
 
The potential existence of faults at Kevin Dome site provides an excellent opportunity to assess 
risks associated with hypothetical fault leakage. In this study, the closest fault to Wallewein 22-1 
is chosen based on the fault interpretations by Zaluski (2017) to demonstrate the usage of NRAP-
IAM workflow (Figure 2-5). This fault geometry is modeled using the Fault Swarm model in 
NRAP-IAM, which employs Monte Carlo (MC) methods.  
 
The fault input data are detailed in Figure 3-13. In the interface, one fault swarm is selected from 
“Number of Fault Swarms”, which allows up to 5 fault swarms to be defined. The input for our 
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one fault swarm can be done using the “swarm1” column in the input table. Swarm centroid X 
location, mean and standard deviation (m), specifies an uncertainty range of the swarm centroid 
location on the X-axis. Likewise, swarm centroid Y location, mean and standard deviation (m), 
defines an uncertainty range of the swarm centroid location on the Y-axis (Figure 3-14a). The 
input parameters of swarm centroid location set our swarm to the west of Wallewein 22-1 and the 
injector is at the center of our model domain. Swarm major/minor axis, standard deviation and 
mean (km), specifies an uncertainty range of the swarm major/minor axis length. Swarm strike, 
mean and standard deviation (degree), defines an uncertainty range of the spatial orientation of the 
swarm ellipse from a map view perspective. Fault density, mean and standard deviation (1/km), 
allows the user to specify an uncertainty range of numbers of individual faults per one kilometer 
within the swarm ellipse. Fault length, mean and standard deviation (m), defines an uncertainty 
range of individual fault length within the swarm ellipse (Figure 3-14a). Pipe spacing, mean and 
standard deviation (m), provides an uncertainty range of the leakage pipe spacing along each 
individual fault (Figure 3-14a). Pipe axis length, mean and standard deviation (m), specifies an 
uncertainty range of pipe axis length in each individual fault. Fault displacement (m) allows the 
user to specify the individual fault displacements (slip) within the swarm ellipse. Fault 
displacement increases damage around a fault and leads to increased permeability in the plane of 
the fault in the NRAP conceptualization. This is discussed in section 3.2.2.2.  
 

 
Figure 3-14: NRAP-IAM input panel for fault swarm data. 
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A fault swarm feature is defined as a group of faults with a resolvable center (centroid) (Figure 3-
14a). Faults in a swarm share a common mean strike angle, each with a minor angular deviation.  
Using the statistical input data listed above, an elliptical area in the model domain was randomly 
populated with individual faults. After each new fault is added, the algorithm performs several 
investigative walks parallel to the minor axis of the ellipse to determine if the required fault density 
is satisfied (Figure 3-14b). A series of leakage pipes is distributed along the fault plane according 
to a user-defined spacing parameter, and x-y coordinates are stored for each fault pipe. Any leakage 
pipe that falls outside the ellipse is subsequently truncated. The remaining pipes are then rotated 
and translated from the origin to satisfy the swarm geometry parameters (Figure 3-15). All pipes 
that fall outside the model domain following translation and rotation are removed. The spatial 
distribution of fault swarms, faults, and fault pipes that is generated within the model can be 
displayed using controls on the Results - Diagnostics dashboard of NRAP-IAM. 
 

 
Figure 3-15: Illustration of geometrical construction of faults within a fault swarm ellipse. Major 
and minor axes of the swarm ellipse lie along the x and y axes, respectively. A) Faults are 
constructed using fault centroid, fault length, strike angle (θ), and pipe spacing parameter values. 
B) Multiple faults (and associated pipes) are constructed within the swarm ellipse. The evolving 
swarm is tested against the fault density parameter (faults per km) by way of a walk parallel to the 
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ellipse minor axis; if the number of faults intersected exceeds the fault density, then the newest 
fault is discarded. Finally, the population of pipes in the swarm is truncated by the equation for the 
swarm ellipse. 
 

 
Figure 3-16: Example fault swarms. Plus symbols denote the locations of individual pipes along 
the length of the fault. The faults have been truncated by the extent of the model domain. 

 
 
3.2.2. CO2/Brine Leakage 
 
3.2.2.1. Wellbore Leakage 
 
Five wells penetrate through the injection zone, and 45 wells penetrate the shallow formations. As 
mentioned previously, permeability and porosity of shallow formations and the wellbore integrity 
of legacy wells are unknown. We investigated uncertainty of these parameters and fixed the 
parameter values of Table 4 for other properties associated with the overlying aquifers. 
 
As described in Section 3.2.1, leakage through wellbore pathways was calculated using ROMs 
developed by Harp et al. (2016). The wellbore leakage ROM is intended to simulate CO2 and brine 
leakage within a cemented wellbore using inputs based on the characteristics of the wellbore and 
from a dedicated reservoir model without wellbores.  
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In order to capture the coupled effects of wellbore leakage on pressure and CO2 saturation within 
the reservoir, a 3D numerical model that couples the reservoir and wellbore model is used to 
simulate the fluxes (model responses). This model will be referred to as the “coupled model”. This 
model was also run without a wellbore in order to collect the pressures and CO2 saturations at the 
base of the wellbore consistent with values from a dedicated reservoir model. This model will be 
referred to as the “reservoir model”.  
 
To capture the coupled effects, some inputs are sampled directly, while other inputs are sampled 
indirectly using a surrogate parameter. Parameters that are generated through Latin Hypercube 
Sampling (LHS), a space-filling technique, include:  
1. Depth to the bottom of the wellbore (d [m])  
2. Cement permeability (k [m2])  
3. Injection rate of the CO2 injectors (qCO2[kg/s])  
 
Where d and k are directly sampled inputs and qCO2 is a surrogate parameter used to indirectly 
sample:  
1. Log CO2 saturation at the base of the wellbore from the dedicated reservoir model (SCO2 [-])  
2. Delta pressure (pressure minus initial pressure; P-P0) at the base of the wellbore from the 
dedicated reservoir model (PCO2 [MPa])  
 
The model responses collected from the coupled model are:  
1. Transient CO2 flux up the wellbore (QCO2 [kg/s])  
2. Transient brine flux up the wellbore (Qbrine [kg/s]) 
 
A ROM is generated using a Multivariate Adaptive Regression Splines (MARS) algorithm 
(Friedman, 1991) for each model response: 1) QCO2 and 2) Qbrine. 
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Figure 3-17: ROM development flow diagram (from Harp et al. 2016) 
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3.2.2.2. Fault Leakage 
 
CO2 and brine leakage through faults was calculated using LHS sampling of FEHM model results 
for combinations of thickness and permeability for each aquifer described for leakage along 
abandoned wellbores. 
 
Flow calculations assume that the fault pipes can be modeled using Darcy flow with a continuum 
porous media simulator, faults are oriented subvertically, and that fault pipes intersect the 
reservoir, aquifers, and soil within the same model bin. 
 
Faults have been characterized by the following architectural elements (Caine et al., 1996; Shipton 
et al., 2002; Shipton et al., 2005): 
 

• Host rock (protolith) unaffected by fault 
• Damage zone containing deformation bands, fractures that slightly decrease host rock 

permeability perpendicular to the fault plane and may enhance permeability parallel to the 
fault plane 

• Fault core (“fault rock”) composed of gouge, cataclasis, and slip surfaces that typically 
exhibits permeabilities much lower than the host rock. 

 
Sorkhabi and Tsuji (2005) generalized the relationship between host rock and fault in the form of 
a conceptual rotation of the permeability anisotropy from horizontal in the host rock (due to 
bedding) to subvertical in the fault zone, enhancing flow parallel to the fault plane. 
 
Spatial variation in the geometry of a fault creates hydrogeologic anisotropy and heterogeneity. 
The width of the fault zone and its bulk permeability vary along strike and along dip. Although the 
fault damage zone generally forms a fault-parallel high-permeability zone, fluid flow (water or 
gas) has been observed to be concentrated in discrete points or small areas along the surface 
expression of faults, and the subsurface flow is hypothesized to follow higher-flux conduits or 
pipes (Fairley et al., 2003; Annunziatellis et al., 2008). The spacing for these pipes can be 
developed from the observed distribution of concentrated flow zones in field sites (Figure 3-17).  
 
The fluid flow characteristics of faults also vary through time. Faults may form conduits or pipes 
for flow during and shortly after seismic activity due to new and open fractures, but with time 
these pipes may become sealed as a result of mineral precipitation or tectonic processes. However, 
field studies of natural leaking CO2 reservoirs demonstrate that fault damage zone fractures 
through the reservoir caprock can remain open for substantial periods of time and are not self-
sealing (Shipton et al., 2005). The ultimate result is that the overall fault zone may represent a 
high- or low-permeability feature (parallel and perpendicular to the fault). 
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Figure 3-18: Conceptual diagram of the geometrical elements of a fault, including host rock block, 
subvertical fault plane, fault core and damage zone, and discrete pipes for fluid flow along the fault 
plane. 
 
Permeability within the fault zone has been measured in sandstone, shale, and granite host rocks 
but measurements are sparse in carbonates. Most published studies focus on the transverse (fault-
perpendicular) permeability as it applies to reservoir compartmentalization. Typical transverse 
fault permeability, relative to host rock, can be summarized for fault elements as follows (Shipton 
et al., 2002; Ahmadov et al., 2007; Odling et al., 2004) with khr being the permeability of 
undamaged host rock: 
 
Fault core: kfc = 0.01 to 0.1 * khr 

Slip surface: ksl = 10 to 100 * khr 

Damage zone: kdz = 0.01 to 0.1 * khr 

Deformation band (within Damage Zone): kdb = 0.001 * khr 
 
Transverse permeability is dominated by the lowest permeability among the fault elements, and 
generally ranges from  
 
kt = 0.001 to 1 * khr 
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Transverse permeability is developed in the model as a reduction factor to the host rock 
permeability, which is conceptually similar to a “skin” factor applied to a well. 
 
Typical fault-parallel permeability is dominated by the high permeability of the damage zone (and 
potentially interconnected fractures—Shipton et al. (2006), and it is characterized by  
 
kp = 2 to 1000 * khr  
 
(Sorkhabi and Tsuji, 2005; Ahmadov et al., 2007). Fault-parallel permeability is developed in the 
model as an enhancement factor to host rock permeability. 
 
The Fault module provides values of CO2 and brine leakage (kg/day) into aquifers 1, 2, and 3 and 
into the soil layer for each of the 100x100 spatial bins. These values are used as input to the Aquifer 
Plume module. 
 
Fault displacement is used to derive width of the damage zone (Figure 3-17). The fault 
permeability models into 3 groundwater aquifers are calculated using this damage zone width 
value. It is assumed that the width of the near leak flow is 1 km. NRAP-IAM then uses the fault 
width and transverse fault permeability in a harmonic mean to compute a modified aquifer 
permeability. This value is fed into the leakage tree in the place of the original aquifer permeability. 
The following equations describe the relationship: 
 
Width of damage zone (m) = Fault displacement / 100 (9) 
 
Fault aquifer 1 permeability model (m2) = 1000.m / ((1/fault aquifer 1 permeability skin) * width 
of damage zone + (1/fault aquifer 1 permeability) * (1000m – width of damage zone)) (10) 
 
3.2.3. Convergence 
 
The purpose of this section is to describe how to determine the number of Monte Carlo simulations 
required in NRAP-IAM to converge to a stable set of results including CO2 and brine leakages to 
an intermediate reservoir and shallow groundwater aquifers. NRAP-IAM will randomly sample 
injection reservoir CO2 saturation and pressure distributions from 50 ROMs as well as other 
reservoir properties (above the injection zone in Figure 1-1) from various distributions specified 
in the input section (Figures 3-11, 3-12, and 3-13). We then perform incremental numbers of 
NRAP-IAM simulations in intervals of 100 until the results stabilize.   
 
Error was also calculated for the case of leakage through legacy wells using equation (9) based on 
an objective function by Olalotiti-Lawal et al. (2017) 
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Where  
P10, P50 and P90 refer to probability percentiles,  
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j=Cases(CO2 Leakage to IntAq,CO2leakagetoGW,BrineLeakagetoIntAq,BrineLeakagetoGW)  
n: number of samples in NRAP-IAM (100 x n) 
 
4. Results and Discussion 
 
The results of the risk assessment process are a large set of simulations that provide a range of 
answers to the questions: 1) How much CO2 can be injected in a 4-year period through a single 
well? 2) How much CO2 and brine are likely to leak through imperfect wellbores and what 
proportion leaks to shallow aquifers versus the atmosphere? and 3) How much CO2 is likely to 
leak through possible faults? We begin with an analysis of which parameters exert the dominant 
control on leakage of CO2 and brine in a sensitivity analysis. We then present results of full-physics 
reservoir simulations varying the sensitive parameters and used these results to create a ROM for 
pressure and CO2 saturation distributions. The ROM was used as input to calculate leakage from 
wells and faults, and we conclude by discussing the results and the likely suitability of the site for 
CO2 storage.  
  
4.1. Sensitivity Analysis 
 
The results of the sensitivity studies are provided in the tornado charts in Figure 4-1 and Figure 
4-2. In these figures, the blue and green bars correspond to normalized sensitivity of low and high 
values of a sensitive parameter respectively on leakage rates. The yellow bars indicate when 
hysteresis option is turned on and its impact on CO2/brine leakage. It is obvious that the most 
significant parameters for CO2 and brine leakage are fracture permeability, permeability of 
confining rocks, end-point fracture CO2 relative permeability, capillary pressure in fracture and 
matrix, and hysteresis (Onishi et al., 2017). It is apparent that fracture permeability is important. 
Heterogeneity of permeability distribution was found to be an important parameter in a previous 
study (Dai et al. 2014). However, the range of average permeability used here is narrow (3.95e-14 
m2 to 9.87e-14 m2) according to Zhou et al. (2013), and therefore heterogeneity of permeability 
has little influence. Permeability of confining rocks controls the amount of CO2 migration into the 
caprock during the post injection period and the pressure drop in the injection zone. End-point 
fracture CO2 relative permeability is also an important parameter which is consistent with Yoshida 
et al. (2016). Capillary pressure controls the size of the transition zone between gaseous phase and 
aqueous phase. In addition, the difference between fracture and matrix capillary pressure affects 
fracture-matrix flow. According to the Dual Porosity Dual Permeability (DPDP) formulation, 
when fracture capillary pressure is higher than matrix capillary pressure, more CO2 migrates into 
the matrix domain, and vice versa. For example, when more CO2 flows into the matrix system, the 
CO2 plume in fracture system decreases, potentially reducing the CO2 leakage amount. As a result, 
capillary pressure is an important parameter. Finally, hysteresis of CO2 relative permeability in 
fractures allow more trapping and therefore a CO2 plume becomes smaller than the case without 
hysteresis, which results in lower leakage rates (corresponding to negative normalized sensitivity). 
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(a) (b) (c) 

  
(d) (e) 

Figure 4-1: Sensitivity analysis results during injection period (4 years).   
(a) CO2 leakage to the atmosphere, (b) CO2 leakage to the intermediate aquifers, (c) CO2 leakage 
to the groundwater aquifer, (d) Brine leakage to the intermediate aquifers, (e) Brine leakage to the 
groundwater aquifer. The yellow bar represents the scenario when hysteresis is turned on. 
 

   
(a) (b) (c) 

  
(d) (e) 

Figure 4-2: Sensitivity analysis results during post-injection period (100 years). (a) CO2 leakage 
to the atmosphere, (b) CO2 leakage to the intermediate aquifers, (c) CO2 leakage to the groundwater 
aquifer, (d) Brine leakage to the intermediate aquifers, (e) Brine leakage to the groundwater 
aquifer. The yellow bar represents the scenario when hysteresis is turned on. See Table 3 for 
explanation of the parameters. 
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4.2. Reservoir Simulation 
 
We used LHS to generate 50 realizations for reservoir simulation using the 6 sensitive parameters 
obtained from the sensitivity analysis. One of the 6 parameters is hysteresis of fracture CO2 relative 
permeability, for which we use a constant value in the sensitivity study. Figure 4-3 presents a 
cross plot of the correlation between the different parameters sampled by LHS. Small correlation 
coefficients indicate poor correlations between each parameter, meaning that parameters are 
efficiently sampled. The distribution of the sampled realizations covers a wide range of 
uncertainties. 
 

 
 
Figure 4-3: LHS results showing correlations among uncertain parameters 

 

The simulation results of total CO2 injected during four years are overlain on the plot in Figure 4-
4 with P10, P50, and P90 probability values. We found that high permeability, high end-point 
fracture CO2 relative permeability, high Land trapping coefficient and low fracture capillary 
pressure correlate with highest total CO2 injected. On the other hand, low permeability, low Land 
trapping coefficient, and high fracture capillary pressure result in low total CO2 injected. These 
are consistent with what we have observed from the sensitivity analysis in section 3.1.2. The results 
also indicate that only about 10% of the simulations inject about 0.75 MT of CO2 into the middle 
Duperow, 50% of the simulations inject roughly 0.5 MT of CO2, and 10% of the simulations inject 
0.22 MT of CO2 over 4 years. These findings show a lower likelihood of successfully injecting 1 
MT into the middle Duperow during the four year injection period compared to those reported by 
Dai et al. (2014), who predicted a greater than 58% probability of 1 MT at the end of 4 years. Dai 
et al. (2014) borrowed well data from a nearby area which are higher than the fracture permeability 
used in this study. We consider a wider number of uncertainty parameters (Table 3) based on 
fracture and matrix systems to investigate the total injectivity and leakage potential. These 
additional parameters, including end point relative permeability of CO2, hysteresis, capillary 
pressure, strength coefficient, shape factor and salinity, contributed to the reduction of CO2 being 
injected after 4 years. 
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Figure 4-4: Reservoir simulation results including Total CO2 injection (MT) with P10, P50, and 
P90 as well as their respective fracture permeability (log(k)) distributions, fracture capillary 
pressure (Pcf), and matrix capillary pressure (Pcm). 
 
4.3. NRAP-IAM Simulation 
 
We used LHS to sample 50 realizations of reservoir results as an input to NRAP-IAM in order to 
calculate potential CO2/brine leakage. Our leakage scenarios include leakage through legacy wells 
and faults to an intermediate reservoir, three shallow formations and the atmosphere. We 
investigated i) impact of wellbore cement quality in the event of leakage through legacy wells, ii) 
impact of fracture permeability, fault length, and fault displacement in the event of fault leakage, 
and iii) impact of number of samples in NRAP-IAM to converge to stable numerical results. 
 
4.3.1. Wellbore Leakage 
 
Figure 4-5 presents the sensitivity study results (leakage rate in percentage) with varying legacy 
wellbore cement quality. The majority of OK to very good sealing permeability cases exhibit a 
leakage rate up to 0.04% of the total injected CO2 within the first 10 years and then rates decline 
to around 0.01% or less towards the 50-year mark (total CO2 injected varies for each realization). 
Among leaky wellbore (bad to very bad sealing permeability) cases, the leakage rate can go up to 
0.18% within the first 10 years and stabilizes down to 0.01% or less toward the end of 50 years. 
Leakage rates increase the most during the initial 4 years of injection and decline afterwards. 
Leakage rates appear to stabilize beyond 30 years, regardless of wellbore cement quality. These 
findings suggest that identifying and locating legacy wells within a reasonable radius of the 
injector is important in managing all the possible leakage pathways. In addition, monitoring during 
and post-injection is critical to ensuring CO2 is contained. On the right hand side of Figure 4-5 
examples are given for the ranges of some of the most important parameters.  
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Figure 4-5: Impact of cement quality (shown as Very Bad to Very Good in the legend) on CO2 
leakage to the atmosphere (left panel). The right panel presents parameters (fracture permeability, 
hysteresis curves, fracture capillary pressure, and matrix capillary pressure) in realizations that 
result in higher CO2 leakage. 
 
Another aspect of interest is CO2/brine leakage rate to an intermediate aquifer and shallow 
groundwater aquifers. Figure 4-6 provides a summary of these leakage rates (kg/s) versus time 
when only the injection period and legacy wellbore leakage are considered. The results indicate 
that the leakage rates of CO2 are more sensitive to legacy wellbore cement quality than those of 
brine. This is partly because of CO2 buoyancy, which helps it travel upward along a leaky wellbore 
more easily. It appears that within the first year of injection, almost no amount of brine makes it 
into the intermediate aquifer from the injection reservoir compared to CO2. There is, however, 
seemingly steady leakage of brine from the beginning of injection into shallow groundwater 
aquifers while the CO2 leak is relatively small within the same period. This could be explained 
that due to the proximity of the intermediate aquifer to the surface and groundwater aquifers 
(Figure 1-1), brine could potentially migrate through wellbore leakage pathways and have an 
impact on USDW. This reinforces the importance of making sure all abandoned wells in the 
injection area are known before CGS is carried out. 
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Figure 4-6: CO2/brine leakage (kg/s) into the atmosphere, intermediate reservoir, and groundwater 
aquifers versus time (year). 
 
4.3.2. Fault Leakage 
 
In this study, we found that CO2/brine leakage is sensitive to fracture permeability and fault 
displacement. Simulation results show that the higher the fracture permeability, the larger the CO2 
plume can become which allows higher chance of CO2 leakage through fault pathways given the 
current fault interpretation. Fault displacement is a variable used to increase fault permeability 
with the assumption that larger slip on faults leads to higher slip plane permeability.  
 
Figure 4-7 depicts a comparison of fault leakage between two cases: low fracture permeability 
and high fracture permeability. These cases are generated from the base fracture permeability 
model in Table 3 using multipliers (0.706 for low and 1.458 for high) to recreate a range of 
uncertainty. The reason why there is leakage where seemingly no CO2 saturation exists in Figures 
4-7a and 4-7b is the presence of dissolved CO2 where CO2 leakage is calculated. In Figures 4-7c 
and 4-7d, the color scale makes it hard to realize there is dissolved CO2 saturation since it is very 
small and is colored black. The color scale in the NRAP viewer could be user-modified in future 
versions to better delineate the CO2 plume front. Simulations of these cases exhibit the sensitivity 
of CO2 leakage through fault pathways to fracture permeability which makes a significant increase 
in the total amount of CO2 leakage (Figure 4-7e). Meanwhile, brine leakage is not as sensitive and 
remains relatively unchanged regardless of fracture permeability (Figure 4-7f). However, the 
amount of brine leakage can be as high as CO2 leakage if not more (up to 0.0027 MT and above). 
This suggests that brine leakage could be as significant as CO2 Leakage. 
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(a) Supercritical CO2 saturation and leakage 

nodes/pipes for low fracture permeability 
(b) Supercritical CO2 saturation and leakage 
nodes/pipes for high fracture permeability 

  
(c) Dissolved CO2 fraction and leakage 

nodes/pipes for low fracture permeability 
(d) Dissolved CO2 fraction and leakage 

nodes/pipes for high fracture permeability 

  
(e) Comparison of total CO2 leakage (f) Comparison of total brine leakage 

Figure 4-7: Map view of CO2 plume resulting from leakage from a fault consisting of a series of 
leakage pipes with low and high fracture permeability cases at the end of 104 years. 
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Figure 4-8 presents leakage calculation results of low fault displacement (10m) and high fault 
displacement (5000 m; this value is acting as a tuning parameter and was increased to demonstrate 
higher leakage in the model. The fault module of the NRAP toolset is still in need of more 
development). Figure 4-8a and Figure 4-8b clearly suggest that both CO2 leakage and brine 
leakage are sensitive to fault displacement. Under the high fault displacement scenario, CO2 
leakage can go up to 0.025 MT and brine leakage up to 0.06 MT. As for low fault displacement, 
CO2 leakage remains well below 0.005 MT and brine leakage well below 0.01 MT. It is important 
to point out that the vertical extent of fault leakage pathways should be well studied in order to 
fully understand the risk of CGS into saline aquifers, specifically in the case of the Kevin Dome 
site. More detailed fault information and interpretation will be obtained from Schlumberger for 
future study on this project. 
 

 
(a) Total CO2 leakage 

 
(b) Total brine leakage 

Figure 4-8: CO2 plume and fault leakage of low and high fracture permeability case at the end of 
104 years 
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4.3.3. Convergence 
 
NRAP simulations were carried out to address the convergence issue with Monte Carlo sampling. 
Figures 4-9, 4-10, 4-11, 4-12, and 4-13 depict the statistics of CO2/brine leakage to an intermediate 
reservoir, groundwater aquifers and the atmosphere. The number on top of each plot in the figures 
is the amount of simulations carried out during one single run. Since Monte Carlo is a random 
sampling process, it takes a certain number of simulations to achieve convergence where the results 
do not significantly contrast from those generated from running a lower number of simulations. 
This also means that the entire uncertainty distribution domain has been sampled, therefore 
reaching stable results even if more simulations are performed. Based on these leakage graphs, the 
Monte Carlo results converge somewhere between 500 to 600 simulations. In the case of broader 
uncertain parameter ranges or increased number of uncertain parameters, more simulations will be 
required to cover the uncertainty distributions using random sampling. The time per simulation is 
substantially reduced due to the use of hybrid (ROMs) instead of full-physics models with NRAP-
IAM as an advantage. However, if there is too much uncertainty, LHS may be able to scale down 
the number of simulations to make it even less computationally expensive while ensuring that the 
full uncertainty domain is taken into account for. 
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Figure 4-9: CO2 leakage (kg/s) to an intermediate reservoir over time (year). The numbers on top 
of each graph represent the amount of NRAP-IAM Monte Carlo simulations performed. 
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Figure 4-10: CO2 leakage (kg/s) to groundwater aquifers over time (year). The numbers on top of 
each graph represent the amount of NRAP-IAM Monte Carlo simulations performed. 

 



LANL Deliverable to Big Sky Carbon Sequestration Partnership   52 
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Figure 4-11: CO2 leakage (kg/s) to the atmosphere over time (year). The numbers on top of each 
graph represent the amount of NRAP-IAM Monte Carlo simulations performed. 
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Figure 4-12: Brine leakage (kg/s) to intermediate reservoir over time (year). The numbers on top 
of each graph represent the amount of NRAP-IAM Monte Carlo simulations performed. 
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Figure 4-13: Brine leakage (kg/s) to groundwater aquifers over time (year). The numbers on top 
of each graph represent the amount of NRAP-IAM Monte Carlo simulations performed. 
 
Using equation (11), error calculation was carried out to help determine the interval of 
convergence. Figure 4-14 presents the error calculation results for CO2 and brine leakage to an 
intermediate reservoir and groundwater aquifers versus number of samples/simulations performed. 
Some cases, especially the brine leakage cases are not fully converged even with the large number 
of realizations (Figure 4-14). This is because of the nature of Monte Carlo sampling in NRAP-
IAM, meaning that NRAP-IAM shows slightly different results in every run. It is therefore 
reasonable to define the optimal number of realizations in NRAP-IAM runs as the number of 
realizations at which significant reduction of the error is seen. In this particular example, the 
convergence of NRAP-IAM may be the number of realizations of 400-500. 
 

  
(a) CO2 leakage to intermediate reservoir (b) CO2 leakage to groundwater aquifers 
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(c) Brine leakage to Intermediate Reservoir (d) Brine leakage to groundwater aquifers 

Figure 4-14: Error calculation results for NRAP-IAM 
 

4.4. Discussion 
 
The results of this risk assessment study consist of full-physics model sensitivity analysis, leakage 
through legacy wells, and leakage through fault pathways. These simulations are to address the 
initial questions regarding possibility of successfully injecting 1 mega ton (MT) of CO2 into the 
Duperow formation as well as risk of leakage through wellbore and fault pathways.  
 
Full-physics model injection simulations show that it is highly unlikely that the project will meet 
its target of 1 MT of CO2 injection, given the current fracture permeability model. Figure 4-4 
depicts sensitivity of total CO2 mass injection of 50 LHS E300 simulations after 4 years. Injection 
was under a BHP control of 18.5 MPa to avoid fracturing the formation. Based on this upper limit 
and the current fracture permeability model, total injection amounts rarely exceed 1 MT at the end 
of 4 years. In contrast to the results presented by Dai et al. (2014) which rely on data from a nearby 
well and indicate a reasonable likelihood of reaching total injectivity, our work employs measured 
data at the injection well and predicts a significantly lower chance of meeting the desired injection 
goal. Nonetheless, both studies present a single-well scenario and thus require more spatial 
information to address subsurface heterogeneity which has been proven to be among key factors 
that affect injectivity. Using core and detailed seismic data, an improved understanding of facies 
and fracture distributions can be incorporated into the next step of Kevin Dome reservoir injection 
simulations. The LHS sampling process in this study can be applied to similar uncertainty analysis 
studies with large numbers of sensitive parameters. 
 
The study on leakage through legacy wells indicates very minimal CO2/brine leakage to the 
atmosphere. However, there is still the possibility of CO2 and brine migrating into an intermediate 
reservoir and contaminating groundwater aquifers. Figures 4-9 to 4-13 indicate that leakage is 
more likely to occur during the 4 years of injection and tends to slow down afterwards as pressures 
dissipate. Overall, there is more CO2 leakage to intermediate reservoirs and groundwater aquifers 
than brine, which is possibly related to buoyancy and mobility of supercritical CO2. Leakage is 
most likely to happen at legacy well SUTA 2-26 (Figure 3-10) due to its vicinity to Wallewein 
22-1 and because low fracture permeability does not allow the CO2 plume to travel further away. 
However there is also the chance of converting a nearby well into an observation well as mentioned 
by Dai et al. (2014), which could potentially reduce the operational cost of a GCS project based 
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on predicting the CO2 plume. In addition, these observations emphasize the importance of 
understanding the fracture network of Duperow formation and its associated fracture permeability.   
 
On the other hand, NRAP-IAM risk assessment of leakage through faults presents a framework 
for evaluating flow across multiple formations through the use of ROMs instead of relying on 
simplified analytical models (Shan et al. 1995; Chang et al., 2008; Zeidouni, 2012). Simulation 
results reinforce the significance of reservoir heterogeneity regarding the leakage potential (Figure 
4-7). Such studies on fault leakage apparently require a comprehensive understanding of the 
vertical and lateral extent of a fault as well as its flow-related properties. We found that the leakage 
amount is sensitive to fault displacement, although this parameter in the NRAP fault ROM is not 
well tied to validated values (Figure 4-8). This research provides a hypothetical case study that 
can be applied elsewhere to simulate fault leakage. 
 
5. Summary and Future Work 
 
In this study, we have conducted risk assessment of potential CGS into the middle Duperow 
formation at Kevin Dome, Montana using the hybrid NRAP-IAM model. Instead of running full-
physics models, NRAP-IAM uses ROMs to perform a large number of simulations and explore 
many uncertain variables and their impact on CO2 and brine leakage should actual CO2 injection 
take place at the site. NRAP-IAM has proved itself to be a powerful tool to carry out such risk 
assessment studies given the ROMs and its compatibility with other reservoir simulators. 
 
From the sensitivity analysis study of injection reservoir parameters, we found that the potential 
amount of CO2 leakage is most sensitive to fracture permeability, end-point CO2 relative 
permeability, capillary pressure, and permeability of confining rocks. Study on leakage pathways 
including legacy wells and faults was also carried out. We learned that wellbore integrity has the 
most impact on CO2 leakage to the atmosphere within the first 10 years after injection. Monitoring 
the plume movement and identifying an accurate number of legacy wells are recommended. As 
for fault leakage pathways, fracture permeability has more impact on CO2 leakage than brine 
leakage, allowing the supercritical and dissolved CO2 to move laterally and reach the fault pipes. 
Fault displacement appears to exert a significant influence on both CO2 and brine leakage in our 
study and should be well understood to ensure the safety of CGS operations. 
 
Future study will incorporate more fault information/interpretation as well as facies and fracture-
driven reservoir porosity and permeability models from Schlumberger to better address 
heterogeneity and predict plume dynamics during and post-injection. Modifications will be made 
to NRAP-IAM to improve its fault leakage model. Two manuscripts will be prepared to present 
current results and new ones with more heterogeneous reservoir models. 
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